Home Electromagnetic Microfluidic Microwave Biosensor Based on Biomimetic Materials for Quantitative Glucose Detection

Microfluidic Microwave Biosensor Based on Biomimetic Materials for Quantitative Glucose Detection

0
  • Ogurtsova, K. et al. IDF Diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res. Clin. Practice. 183, 109–118. https://doi.org/10.1016/j.diabres.2021.109118 (2022).

    Google Scholar article

  • DeBoer, IH et al. Diabetes and hypertension: A position statement from the American Diabetes Association. Diabetic treatments 40(9), 1273-1284. https://doi.org/10.2337/dci17-0026 (2017).

    CAS PubMed Google Scholar Article

  • American Diabetes Association. 7. Diabetes Technology: Standards of Medical Care for Diabetes—2019. Diabetic treatments 42(Suppl 1), S71–S80. https://doi.org/10.2337/dc19-S007 (2019).

    Google Scholar article

  • Ozana, N. et al. Speckle-based non-contact optical sensor for glucose concentration detection using magneto-optical effect. J. Biomed. Opt. 21(6), 65001. https://doi.org/10.1117/1.JBO.21.6.065001 (2016).

    PubMed Google Scholar article

  • Chen, JY et al. Non-invasive blood glucose measurement with 95% certainty by pressure-regulated Mid-IR. Talanta 197, 211–217. https://doi.org/10.1016/j.talanta.2019.01.034 (2019).

    CAS PubMed Google Scholar Article

  • Aloraefy, M., Pfefer, TJ, Ramella-Roman, JC & Sapsford, KE In vitro evaluation of fluorescence glucose biosensor response. Sensors (Basel) 14(7), 12127–12148. https://doi.org/10.3390/s140712127 (2014).

    ADS CAS Article Google Scholar

  • Salim, A. & Lim, S. Recent advances in flexible and wearable noninvasive wireless biosensors. Biosens. Bioelectron. 141111422. https://doi.org/10.1016/j.bios.2019.111422 (2019).

    CAS PubMed Google Scholar Article

  • Cardosi, M. & Liu, Z. Amperometric glucose sensors for whole blood measurement based on dehydrogenase enzymes. Dehydrogenases. https://doi.org/10.5772/48491 (2012).

    Google Scholar article

  • Cebedio, MC et al. Analysis and design of a coplanar microwave sensor for non-invasive blood glucose measurements. IEEE Sense. J. 20(18), 10572–10581. https://doi.org/10.1109/jsen.2020.2993182 (2020).

    ADS CAS Article Google Scholar

  • Kiani, S., Rezaei, P. & Fakhr, M. Dual-frequency microwave resonant sensor for detecting noninvasive glucose level changes at the fingertips. IEEE Trans. Instrument. My. 70, 1–8. https://doi.org/10.1109/tim.2021.3052011 (2021).

    CAS Google Scholar Article

  • Govind, G. & Akhtar, MJ Metamaterial-inspired microwave microfluidic sensor for glucose monitoring in aqueous solutions. IEEE Sense. J. 19(24), 11900–11907. https://doi.org/10.1109/jsen.2019.2938853 (2019).

    ADS CAS Article Google Scholar

  • Qiang, T., Wang, C., and Kim, NY Quantitative glucose level detection based on a radiofrequency patch biosensor combined with fixed-volume structures. Biosens. Bioelectron. 98, 357–363. https://doi.org/10.1016/j.bios.2017.06.057 (2017).

    CAS PubMed Google Scholar Article

  • Zhou, YJ, Li, QY, Zhao, HZ & Cui, TJ Gain-Assisted Active Fanoplasmon Resonance for High-Resolution Detection of Aqueous Glucose Solutions. Adv. Mater. Technology. https://doi.org/10.1002/admt.201900767 (2019).

    PubMed Google Scholar article

  • Abdolrazzaghi, M., Katchinskiy, N., Elezzabi, AY, Light, PE, and Daneshmand, M. Noninvasive detection of glucose in aqueous solutions using an active split-ring resonator. IEEE Sense. J. 21, 18742–18755. https://doi.org/10.1109/jsen.2021.3090050 (2021).

    ADS CAS Article Google Scholar

  • Choi, H. et al. Design and in vitro interference testing of a non-invasive microwave blood glucose monitoring sensor. IEEE Trans. Microwave. Theory Tech. 63, 3016–3025. https://doi.org/10.1109/TMTT.2015.2472019 (2015).

    ADS CAS PubMed Article PubMed Central Google Scholar

  • Tiwari, NK, Singh, SP, Mondal, D. & Akhtar, MJ Flexible biomedical RF sensors for quantifying the purity of medical-grade glycerol and glucose concentrations. Int. J. Microw. wirel. Technology. 12, 120–130. https://doi.org/10.1017/s1759078719001089 (2019).

    Google Scholar article

  • Koirala, GR, Kim, ES and Kim, N.-Y. Micro-resonator-based bivariate detection of glucose concentration with phenylboronic acid-functionalized reduced graphene oxide. IEEE Access 6, 60968–60973. https://doi.org/10.1109/access.2018.2874174 (2018).

    Google Scholar article

  • Satish, Sen, K. & Anand, S. Demonstration of a microstrip sensor for the feasibility study of noninvasive blood glucose detection. Map 36, 193–199. https://doi.org/10.1007/s12647-020-00396-z (2020).

    Google Scholar article

  • Hu, R., Stevenson, AC & Lowe, CR An acoustic glucose sensor. Biosens. Bioelectron. 35(1), 425–428. https://doi.org/10.1016/j.bios.2012.02.026 (2012).

    CAS PubMed Google Scholar Article

  • Yeon, SY, Seo, M., Kim, Y., Hong, H. & Chung, TD Paper-based electrochromic glucose sensor with polyaniline on a layer of indium tin oxide nanoparticles as optical readout . Biosens. Bioelectron. 203114002. https://doi.org/10.1016/j.bios.2022.114002 (2022).

    CAS PubMed Google Scholar Article

  • Li, Z., Li, G., Yan, W.-J. & Lin, L. Classification of diabetes and measurement of blood glucose concentration noninvasively using near-infrared spectroscopy. Infrared Phys. Technology. 67, 574–582. https://doi.org/10.1016/j.infrared.2014.09.040 (2014).

    ADS CAS Article Google Scholar

  • Chang, L., Liu, C., He, Y., Xiao, H. & Cai, X. Current-time behavior study of small volume solution for application in noninvasive blood glucose monitoring based on reverse iontophoresis. Science. China Chem. 54(1), 223–230. https://doi.org/10.1007/s11426-010-4130-9 (2010).

    CAS Google Scholar Article

  • Adhikari, KK & Kim, N.-Y. Ultra-high sensitivity mediatorless biosensor based on a microfabricated microwave resonator for the detection of micromolar concentrations of glucose. IEEE Trans. Microwave. Theory Tech. 64(1), 319–327. https://doi.org/10.1109/tmtt.2015.2503275 (2016).

    Article on Google Scholar Ads

  • Yilmaz, T., Foster, R. & Hao, Y. Radiofrequency and microwave techniques for noninvasive blood glucose measurement. Diagnosis (Basel). https://doi.org/10.3390/diagnostics9010006 (2019).

    PubMed Article PubMed Central Google Scholar

  • Costanzo, S., Cioffi, V. & Raffo, A. Analytical model for the behavior of microwave sensors in a biological medium. 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS) 1–4. https://doi.org/10.1109/COMCAS.2017.8244789 (2017).

  • Deshmukh, VV & Chorage, SS Noninvasive blood glucose determination using a narrowband microwave sensor. J. Ambient intelligence. Humanize. Calculation. https://doi.org/10.1007/s12652-021-03105-z (2021).

    Google Scholar article

  • Gennarelli, G., Romeo, S., Scarfì, MR & Soldovieri, F. A microwave resonant sensor for concentration measurements of liquid solutions. IEEE Sense. J. 13(5), 1857–1864. https://doi.org/10.1109/JSEN.2013.2244035 (2013).

    Article on Google Scholar Ads

  • Byford, JA, Park, KY, and Chahal, P. Metamaterial-inspired periodic structure used for microfluidic sensing. IEEE 65th Electronic Components and Technology Conference (CECT) 1997–2002. https://doi.org/10.1109/ECTC.2015.7159876 (2015).

  • Mohd Bahar, AA et al. Real-time microwave biochemical sensor based on a circular SIW approach for aqueous dielectric detection. Science. representing 9(1), 5467. https://doi.org/10.1038/s41598-019-41702-3 (2019).

    ADS CAS PubMed Article PubMed Central Google Scholar

  • Ebrahimi, A., Scott, J. & Ghorbani, K. Microwave reflective biosensor for glucose level detection in aqueous solutions. Meaning. Actuators A Phys. https://doi.org/10.1016/j.sna.2019.111662 (2020).

    Google Scholar article

  • Kumari, R., Patel, PN, and Yadav, R. An ENG resonator-based microwave sensor for aqueous glucose characterization. J.Phys. Appl. Phys. https://doi.org/10.1088/1361-6463/aaa5c5 (2018).

    Google Scholar article

  • Li, L. & Uttamchandani, D. A dielectric microwave biosensor based on suspended distributed MEMS transmission lines. IEEE Sense. J. 9(12), 1825–1830. https://doi.org/10.1109/jsen.2009.2031388 (2009).

    Article on Google Scholar Ads

  • Govind, G. & Akhtar, MJ Design of a reusable ELC resonator-based RF microfluidic sensor for blood glucose estimation. Science. representing ten(1), 18842. https://doi.org/10.1038/s41598-020-75716-z (2020).

    ADS CAS PubMed Article PubMed Central Google Scholar

  • Ebrahimi, A., Withayachumnankul, W., Al-Sarawi, SF, and Abbott, D. Microfluidic microwave sensor for the determination of glucose concentration in water. 2015 IEEE 15th Mediterranean Microwave Symposium (SMS) 1–3. https://doi.org/10.1109/MMS.2015.7375441 (2015).

  • Kim, NY et al. Rapid, sensitive and reusable detection of glucose by a robust biosensor chip with an integrated passive radio frequency device. Science. representing 57807. https://doi.org/10.1038/srep07807 (2015).

    CAS PubMed Article PubMed Central Google Scholar

  • Yoon, G. Dielectric properties of glucose in bulk aqueous solutions: influence of polarization and electrode patterning. Biosens. Bioelectron. 26(5), 2347–2353. https://doi.org/10.1016/j.bios.2010.10.009 (2011).

    CAS PubMed Google Scholar Article

  • Topsakal, E., Karacolak, T. & Moreland, EC Glucose-dependent dielectric properties of blood plasma. 2011 URSI 30th General Assembly and Scientific Symposium 1–4. https://doi.org/10.1109/URSIGASS.2011.6051324 (2011).

  • Yilmaz, T., Foster, R. & Hao, Y. Broadband fabric mimicking phantoms and a patch resonator to assess noninvasive monitoring of blood glucose levels. IEEE Trans. Antennas Propag. 62(6), 3064–3075. https://doi.org/10.1109/tap.2014.2313139 (2014).

    Article on Google Scholar Ads

  • Mashal, A., Gao, F. & Hagness, SC Heterogeneous anthropomorphic phantoms with realistic dielectric properties for microwave breast imaging experiments. Microwave. Opt. Technology. Lett. 53(8), 1896-1902. https://doi.org/10.1002/mop.26128 (2011).

    PubMed Article PubMed Central Google Scholar

  • Pantélis, E. et al. Polymer gel dosimetry close to a 125I seed interstitial brachytherapy. Phys. Med. Biol. 50(18), 4371–4384. https://doi.org/10.1088/0031-9155/50/18/009 (2005).

    CAS PubMed Google Scholar Article